Tetricken better: 50.1 21, pp 1237 - 4136
©Pergoria Presa Ltd. 1330.1 Runtai un Great Brutain

 $0.040 - 4.30490 + 1.108 - 4.433903 - 0.10$

POLAR SUBSTITUENT EFFECTS IN THE SOLVOLYSIS OF 2-METHYL-2-EXO-NORBORNYL 2,4_DINITROPHENYL ETHERS

C.A. Grob & A. Waldner

Institute of Organic Chemistry, University of Basel, 4056 Easel, Switzerland.

Summary. A comparison of polar substituent effects In the solvolysis of tertiary and secondary 2-exo-norbornyl derivatives lndlcates that a gradation of electron shifts provides a better mechanistic model that one involving the classical-nonclassical ion dichotomy.

There is a widespread belief that secondary 2-exo-norbornyl derivatives $\underline{1}$, R = H, solvolyse with anchimeric assistance from the C(1)-C(6) σ -bond, whereas their tertiary analogues 3 , $R = H$, react without such assistance. Furthermore, the former (k_A) process is thought to lead to a symmetrically bridged, i.e. nonclassical cation 2 , the latter (k_c) process, however, to an unbridged, i.e. classical cation 4 $¹$. This rigorous mechanistic dichotomy cannot be upheld in</sup> the light of the following comparison of substituent effects in the solvolysis of tertiary and secondary 2-exo-norbornyl derivatives.

First order rate constants for the reaction of tertiary exo-2,4-dinitr phenyl ethers $\underline{3}a - \underline{3}h$ (X = 2,4-(NO₂)₂C₆H₃O) and for the corresponding endo ethers $\frac{5}{5}^{-2}$ in 80 vol.% ethanol at 100° C are listed in the following TABLE.

TABLE

When log k for the ethers $\underline{3}$ a – $\underline{3}$ h are plotted against the inductive substituent constants σ_T^q for R³ (Figure 1, plot 1) the points fit the regression line well if the electrofugal groups $COO⁻$ and $CH₂OH$ are omitted. The latter are known to exert a special electron-donating effect in $\mathrm{k_{_{C}}}$ processes 4 and lead to elevated rates by factors of 16 and 4, respectively. The reaction constant q of -1.30 for the exo ethers $\frac{3}{2}$, as calculated from the slope of plot 1, is substancially larger than that for the endo ethers $\frac{5}{2}$ ($q = -0.75$ 2) (plot 2), but smaller than the φ value of -2.0 for the recently reported secondary exotosylates 1, $X = 0Ts$, Evidently, the ionization rates of 3 and 5 are mainly controlled by the polar effects of R, and these are more strongly transmitted in the W-like conformation 3 than in the sickle-like conformation 5. This is also reflected in the exo/endo rate ratios (TABLE) which decrease from 491 for $R =$ (CH_3) ₂CH to 13 for R = OCOCH₃, i.e. as the electron attracting power of R increases. In addition the g-values for 3 and 1 show that ionization to tertiary cations 4 is less affected by substituents at C(6) than ionization to secondary cations 6 .

log k for the tertiary exo ethers 3 also correlate well with log k for the tertiary endo ethers 5 (Figure 2, plot 1) and for the 1-substituted 3-bromoadamantanes 7⁴ (plot 2), as would be expected for like processes. However, the

9 values are scmewhat larger for the strained norbornyl ethers 3 (-1.20) than for the unstrained bromoadamantanes 7 (-1.14) 4 .

The most important result is the excellent correlation between log k for the tertiary exo ethers 3 and the secondary exo tosylates 1^{-5} (Figure 2, plot 3), showing that the two series arc affected in the same way but in different degree (slope 0.66) by substituents at $C(6)$. The only exception is the deviation of the point for $R = H$, which indicates that further factors are involved here 6 .

The correlation in plot 3 suggests that the reactions of the secondary and tertiary derivatives, 1 and 3, respectively, differ only in the degree of displacement of the $R-C(6)-C(1)$ electrons towards the incipient cationic centers at C(2). This induced polarization, symbolized by horizontal arrows in the cations 4 and 6 , should be stronger in the secondary cation 6 and therefore lead to stronger bonding between C(6) and C(2). In the symbolism of conventional structural formulae this implies stronger bridging. On this basis bridging (d-participation), as in 2, and longitudinal polarization, as in 4 and 5, are alternative _ descrrptions of the transmission of polar effects in electron deficient molecules.

We thank Professor Paul von R. Schleyer, Erlangen, for stimulating criticism.

REFERENCES

- For a recent authoratative review see "The Nonclassical Ion Problem" by H.C. Brown, with comments by P. von R. Schleyer; Plenum Press, New York 1977.
- 2) C.A. Grob & A. Waldner, Tetrahedron Letters 1980,
- 3) C.A. Grob, B. Schaub & P1.G. Schlageter, Helv. chim. acta 63, 57 (1980).
- 4) W. Frscher, C.A. Grob, ibid. 61, 1588 (1978).
- 5) W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Tetrahedron Letters 1979, 1905.
- 6) e.g. the rates in the tertiary series <u>3</u> follow the inductive order i-Pr $>$ CH $_3$ $>$ H, whereas the order is H $>$ i-Pr $>$ CH₃ in the secondary series 1. This reversal is probably caused by the easier and stronger solvation of C(6) in the secondary cation 6 , $R = H$.

(Received in Germany 8 September 1980)